Polyamidoamine dendrimer-conjugated triamcinolone acetonide attenuates nerve injury-induced spinal cord microglia activation and mechanical allodynia
نویسندگان
چکیده
Background Accumulating evidence on the causal role of spinal cord microglia activation in the development of neuropathic pain after peripheral nerve injury suggests that microglial activation inhibitors might be useful analgesics for neuropathic pain. Studies also have shown that polyamidoamine dendrimer may function as a drug delivery vehicle to microglia in the central nervous system. In this regard, we developed polyamidoamine dendrimer-conjugated triamcinolone acetonide, a previously identified microglial activation inhibitor, and tested its analgesic efficacy in a mouse peripheral nerve injury model. Result Polyamidoamine dendrimer was delivered selectively to spinal cord microglia upon intrathecal administration. Dendrimer-conjugated triamcinolone acetonide inhibited lipoteichoic acid-induced proinflammatory gene expression in primary glial cells. In addition, dendrimer-conjugated triamcinolone acetonide administration (intrathecal) inhibited peripheral nerve injury-induced spinal cord microglial activation and the expression of pain-related genes in the spinal cord, including Nox2, IL-1β, TNF-α, and IL-6. Dendrimer-conjugated triamcinolone acetonide administration right after nerve injury almost completely reversed peripheral nerve injury-induced mechanical allodynia for up to three days. Meanwhile, dendrimer-conjugated triamcinolone acetonide administration 1.5 days post injury significantly attenuated mechanical allodynia. Conclusion Our data demonstrate that dendrimer-conjugated triamcinolone acetonide inhibits spinal cord microglia activation and attenuates neuropathic pain after peripheral nerve injury, which has therapeutic implications for the treatment of neuropathic pain.
منابع مشابه
Paroxetine Attenuates the Development and Existing Pain in a Rat Model of Neurophatic Pain
Background: P2X4 receptor (P2X4R), a purinoceptor expressed in activated spinal microglia, plays a key role in the pathogenesis of neuropathic pain. Spinal nerve injury induces up-regulation of P2X4R on activated microglia in the spinal cord, and blockade of this receptor can reduce neuropathic pain. The present study was undertaken to determine whether paroxetine, an inhibitor of P2X4R, could ...
متن کاملNADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain.
Increasing evidence supports the notion that spinal cord microglia activation plays a causal role in the development of neuropathic pain after peripheral nerve injury; yet the mechanisms for microglia activation remain elusive. Here, we provide evidence that NADPH oxidase 2 (Nox2)-derived ROS production plays a critical role in nerve injury-induced spinal cord microglia activation and subsequen...
متن کاملLarge A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury
BACKGROUND After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK) in spinal micro...
متن کاملIntrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation
BACKGROUND Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. METHODS Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1) sham (Group S), which underwent removal of the L6 transverse process; (2) ligated (Group L), which underwent left L5 spinal n...
متن کاملIntrathecal Lamotrigine Attenuates Mechanical Allodynia and Suppresses Microglial and Astrocytic Activation in a Rat Model of Spinal Nerve Ligation
PURPOSE Lamotrigine, a novel anticonvulsant, is a sodium channel blocker that is efficacious in certain forms of neuropathic pain. Recently, microglial and astrocytic activation has been implicated in the development of nerve injury-induced neuropathic pain. We have assessed the effects of continuous intrathecal administration of lamotrigine on the development of neuropathic pain and glial acti...
متن کامل